Asian Journal of Transfusion Science
Home About Journal Editorial Board Search Current Issue Ahead of print Back Issues Instructions Subscribe Login  Users: 309 Print this page  Email this page Small font sizeDefault font sizeIncrease font size 


 
ORIGINAL ARTICLE Table of Contents   
Year : 2015  |  Volume : 9  |  Issue : 2  |  Page : 155-158
Platelet growth factors from allogeneic platelet-rich plasma for clinical improvement in split-thickness skin graft


1 Department of Transfusion Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
2 Department of Transfusion Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
3 Department of Plastic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Click here for correspondence address and email

Date of Web Publication12-Aug-2015
 

   Abstract 

Background and objectives: Platelets are a source of numerous growth factors which facilitate repair and healing. Thus platelet rich plasma has been increasingly used as a treatment modality in the field of reconstructive surgeries for wound healing. This preliminary study was carried out to explore whether platelet growth factors from platelet rich plasma could be used for enhancement of split thickness skin graft survival. Materials and Methods: Twenty patients (13 males and 7 females) requiring split thickness skin graft for various clinical reasons were enrolled in the study. Platelet rich plasma was collected by apheresis and frozen at −80° C. It was thawed at room temperature immediately before its intended application. PRP was applied only on one half of the wound, while another half served as control. Patient was followed for 6 weeks. The effect was assessed at first dressing in terms of graft uptake and subsequently as time taken for complete healing. Results: There was 100% uptake of the graft in the area where platelet rich plasma was applied. In the control area, there was complete graft loss in 4 cases, partial loss in 7 cases and complete uptake in 9 cases. Conclusion: This study demonstrated promising results on application of PRP to split thickness skin grafts. Further randomized studies with greater sample size may be undertaken to establish platelet rich plasma as a validated treatment modality.

Keywords: Platelet growth factors, platelet-rich plasma, skin graft

How to cite this article:
Sonker A, Dubey A, Bhatnagar A, Chaudhary R. Platelet growth factors from allogeneic platelet-rich plasma for clinical improvement in split-thickness skin graft. Asian J Transfus Sci 2015;9:155-8

How to cite this URL:
Sonker A, Dubey A, Bhatnagar A, Chaudhary R. Platelet growth factors from allogeneic platelet-rich plasma for clinical improvement in split-thickness skin graft. Asian J Transfus Sci [serial online] 2015 [cited 2019 Jul 24];9:155-8. Available from: http://www.ajts.org/text.asp?2015/9/2/155/162712



   Introduction Top


There are numerous treatment options and modalities available in the field of wound care. Platelet-rich plasma (PRP) serves as a source of growth factors important in vascularization and regeneration. It is a potential reservoir of essential growth factors, including platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor-beta 1, and insulin-like growth factor which facilitate repair and healing. [1],[2] These peptide growth factors are involved in a variety of biologic processes, which help in altering the wound environment to optimize healing conditions. [3] These compounds are released during platelet activation in response to a variety of stimuli, including thrombin, collagen, adenosine diphosphate and even due to membrane disruption by freeze-thaw technique. [4],[5] PRP has gained popularity as a treatment modality in the field of orthopedic, oral and maxillofacial, dental, ophthalmological, plastic and reconstructive surgery. [6],[7],[8],[9],[10],[11],[12] It has been found to accelerate endothelial, epithelial, and epidermal regeneration, stimulate angiogenesis, enhance collagen synthesis, promote soft tissue healing, decrease dermal scarring, enhance the hemostatic response to injury, and reverse the inhibition of wound healing caused by glucocorticoids. [13],[14]

We have hypothesized that the application of PRP in the split-thickness skin graft is a safe strategy to induce positive changes in the wound microenvironment. Hence, this preliminary study was carried out to explore whether platelet growth factors from PRP could be used for enhancement of skin graft survival.


   Materials and Methods Top


The study was carried out in a tertiary care hospital of north India after obtaining approval from Ethical Committee of the Institute. Twenty patients (13 males and 7 females) requiring split-thickness skin graft for various clinical reasons were enrolled in the study. Inclusion was based on the absence of systemic diseases which could hamper the skin graft acceptance such as diabetes mellitus, collagen vascular disease, etc. Written informed consent was obtained from all the patients before initiation of treatment.

Preparation of platelet-rich plasma

Totally, 20 healthy donors, ABO matched with the patient and passing the criteria for plateletpheresis, were randomly included in the study after taking informed consent. Ethylenediaminetetraacetic acid anticoagulated blood sample was collected prior to plateletpheresis procedure, and cell counts were done using automated cell counter (Sysmex KX-21, Cobe, Japan). PRP was collected by apheresis using the discontinuous cell separation method (MCS 3p, Haemonetics, München, Germany). From the final unit, approximately 5 mL of PRP was transferred in satellite tubing attached with main collection bag with the help of sterile connecting device (Composeal, Fresenius, Germany) for sampling. The sample was frozen at 80°C. The frozen segment was shipped to plastic surgery operation theater in a dedicated cool box to avoid any preapplication decay of growth factors. It was thawed at room temperature immediately before its intended application on the wound. The process of freezing, followed by thawing disrupted the platelet cell membrane and facilitated the release of growth factors.

Platelet-rich plasma was applied only on one half of the wound while another half served as control. After placing split-thickness graft, pressure bandaging was done as per routine practice. The patient under study was prescribed medicines and followed-up weekly for 6 weeks. The healing parameters such as wound size, edges, base and surrounding edema were compared to the control half. The effect was assessed at first dressing in terms of graft uptake and subsequently as time taken for complete healing.


   Results Top


Platelet concentration of PRP ranged from 1.15 to 1.23 × 10 9 /μL (mean 1.17 × 10 9 /μL). The age range of patients was from 5 years to 60 years. There were 6 cases of postburn contractures, 5 cases of benign ulcers, 4 cases of arterio-venous malformations and 5 cases of the other miscellaneous diagnosis. Patient characteristics are summarized in [Table 1].
Table 1: Patient characteristics


Click here to view


Platelet-rich plasma was applied to one-half of the wound, and the other half was taken as control. There was 100% uptake of the graft in the area where PRP was applied. In the control area, there was complete graft loss in 4 cases, partial loss in 7 cases and complete uptake in 9 cases [Table 1].


   Discussion Top


The clinical use of PRP for a wide variety of applications has been reported in reconstructive surgery. This study was undertaken to assess the efficacy of PRP in terms of graft survival in recipients of split-thickness skin graft and showed encouraging results. Numerous studies from the literature provide strong evidence to support its clinical use. Schade and Roukis found that addition of PRP to split-thickness skin graft recipient sites enhance primary healing and reduce healing time, likely as a result of shearing force reduction and enhancement of the wound environment with growth factors. [15] Adly and Ahmad applied platelet gel topically to split-thickness skin grafted burn wounds along with standard treatment to observe the healing process and found that platelet gel enhances the healing skin grafted postburn raw areas. [16] A study by Kakudo et al. revealed that PRP promotes epithelialization and angiogenesis of split-thickness skin graft donor sites. They found that epithelialization progressed more rapidly; pain was milder. Furthermore, the epidermal thickness and number of newly formed vessels in the dermis were significantly greater on the PRP-treated side. [17] In a recent study, Wanden-Berghe et al. found clinically a clear improvement in chronic wounds with an accelerated healing on application of PRP activated by calcium chloride. [18]

In the majority of clinical applications, autologous platelets have been used for the PRP formation, which renders it prone to variability. In our study, we have used allogeneic platelets for preparation of PRP as these are available in larger quantities, are safe and affordable, highly standardized in terms of platelet, residual leukocyte and red blood cell content, regulated for centrifugal forces used for their isolation, the temperature of the centrifugation, techniques of separation and processing and the composition of the preservative solution. A study done by Zhang et al. has demonstrated the promising use of allogeneic PRP for bone defect treatment with negligible immunogenicity, great healing efficacy, potentially more consistent quality, and no additional health burden to patients. [19]

In our study, we have also observed that in 9 cases, there was full graft uptake and healing on the control area similar to that of the area where PRP was applied. The plausible reason for this was close proximity of both areas which led to percolation of growth factors onto the control area. Growth factors transduce signals through wound macrophages and thus trigger the induction of positive autocrine feedback loops. [20] This may partially enhance the cascade of tissue repair processes required for wound healing in the adjacent nontreated part.

This study demonstrated promising results on application of PRP to split-thickness skin grafts. Our findings could have been better substantiated if we had done the histopathological examination of our cases to reveal epithelialization and angiogenesis of split-thickness skin graft. Further, randomized studies with greater sample size need to be undertaken in this area to establish PRP as a validated treatment modality.

 
   References Top

1.
Greenhalgh DG. The role of growth factors in wound healing. J Trauma 1996;41:159-67.  Back to cited text no. 1
    
2.
Miyazono K, Takaku F. Platelet-derived growth factors. Blood Rev 1989;3:269-76.  Back to cited text no. 2
    
3.
Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 2004;91:4-15.  Back to cited text no. 3
    
4.
Kaux JF, Le Goff C, Seidel L, Péters P, Gothot A, Albert A, et al. Comparative study of five techniques of preparation of platelet-rich plasma. Pathol Biol 2011;59:157-60.  Back to cited text no. 4
    
5.
Zimmermann R, Jakubietz R, Jakubietz M, Strasser E, Schlegel A, Wiltfang J, et al. Different preparation methods to obtain platelet components as a source of growth factors for local application. Transfusion 2001;41:1217-24.  Back to cited text no. 5
    
6.
Rughetti A, Flamini S, Colafarina O, Dell′Orso L, Filoni A, Gallo R, et al. Closed surgery: Autologous platelet gel for the treatment of pseudoarthrosis. Blood Transfus 2004;1:37-43.  Back to cited text no. 6
    
7.
Mazzucco L, Medici D, Serra M, Panizza R, Rivara G, Orecchia S, et al. The use of autologous platelet gel to treat difficult-to-heal wounds: A pilot study. Transfusion 2004;44:1013-8.  Back to cited text no. 7
    
8.
Forni F, Marzagalli M, Tesei P, Grassi A. Platelet gel: Applications in dental regenerative surgery. Blood Transfus 2013;11:102-7.  Back to cited text no. 8
    
9.
Gehring S, Hoerauf H, Laqua H, Kirchner H, Klüter H. Preparation of autologous platelets for the ophthalmologic treatment of macular holes. Transfusion 1999;39:144-8.  Back to cited text no. 9
    
10.
Thorn JJ, Sørensen H, Weis-Fogh U, Andersen M. Autologous fibrin glue with growth factors in reconstructive maxillofacial surgery. Int J Oral Maxillofac Surg 2004;33:95-100.  Back to cited text no. 10
    
11.
Bhanot S, Alex JC. Current applications of platelet gels in facial plastic surgery. Facial Plast Surg 2002;18:27-33.  Back to cited text no. 11
    
12.
Anitua E, Muruzabal F, Alcalde I, Merayo-Lloves J, Orive G. Plasma rich in growth factors (PRGF-Endoret) stimulates corneal wound healing and reduces haze formation after PRK surgery. Exp Eye Res 2013;115:153-61.  Back to cited text no. 12
    
13.
Heldin CH, Westermark B. Platelet-derived growth factor: Mechanism of action and possible in vivo function. Cell Regul 1990;1:555-66.  Back to cited text no. 13
    
14.
Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986;46:155-69.  Back to cited text no. 14
[PUBMED]    
15.
Schade VL, Roukis TS. Use of platelet-rich plasma with split-thickness skin grafts in the high-risk patient. Foot Ankle Spec 2008;1:155-9.  Back to cited text no. 15
    
16.
Adly OA, Ahmad AS. Evaluation of topical application of platelet gel in skin grafted burn wounds. Egypt J Plast Reconstr Surg 2011;35:233-7.  Back to cited text no. 16
    
17.
Kakudo N, Kushida S, Minakata T, Suzuki K, Kusumoto K. Platelet-rich plasma promotes epithelialization and angiogenesis in a splitthickness skin graft donor site. Med Mol Morphol 2011;44:233-6.  Back to cited text no. 17
    
18.
Wanden-Berghe C, Granell L, Giménez JL, De Dios Praes J, Muñoz-Puller P, Cases C, et al. Autologous growth factors in the treatment of chronic wounds. Rev Enferm 2014;37:51-4.  Back to cited text no. 18
    
19.
Zhang ZY, Huang AW, Fan JJ, Wei K, Jin D, Chen B, et al. The potential use of allogeneic platelet-rich plasma for large bone defect treatment: Immunogenicity and defect healing efficacy. Cell Transplant 2013;22:175-87.  Back to cited text no. 19
    
20.
Pierce GF, Mustoe TA, Lingelbach J, Masakowski VR, Griffin GL, Senior RM, et al. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol 1989;109:429-40.  Back to cited text no. 20
    

Top
Correspondence Address:
Dr. Anju Dubey
Department of Transfusion Medicine, All India Institute of Medical Sciences, Rishikesh - 249 201, Uttarakhand
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-6247.162712

Rights and Permissions



 
 
    Tables

  [Table 1]



 

Top
 
  Search

  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
    References
    Article Tables

 Article Access Statistics
    Viewed2117    
    Printed38    
    Emailed1    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal

Association Contact us | Sitemap | Advertise | What's New | Feedback | Copyright and Disclaimer

2006 - Asian Journal of Transfusion Science | Published by Wolters Kluwer - Medknow
Online since 10th November, 2006